USN

12EC030

M.Tech. Degree Examination, June/July 2013 Digital Signal Compression

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions.

- 1 a. What is distortion? Obtain an equation for mean squared error and hence derive PSNR in terms of distortion and explain its importance. (08 Marks)
 - b. Define prefix codes. State and prove the Kraft-Mcmillan inequality theorem for uniquely decodable codes. (08 Marks)
 - c. Given an alphabet $A = \{a_1, a_2, a_3, a_4\}$. Find first order entropy in the following cases:

i)
$$p(a_1) = 0.505$$
, $p(a_2) = \frac{1}{4}$, $p(a_3) = \frac{1}{8}$, $p(a_4) = 0.12$

Discuss code excited linear prediction (CELP).

ii)
$$p(a_1) = p(a_2) = \frac{1}{8}, p(a_3) = \frac{1}{4}, p(a_4) = \frac{1}{2}$$
 (04 Marks)

- 2 a. Derive an expression for SNR in dB for uniform quantiser for an uniformly distributed source. (08 Marks)
 - b. Briefly explain Karhunen-Loeve transform (KLT) and discrete cosine transform (DCT). Also state their advantages and disadvantages. (06 Marks)
 - c. With an algorithm, explain the design of LBG-VQ approach. (06 Marks)
- 3 a. Design a Jayanth Quantiser and explain how the multiplier values are selected for an input sequence to be quantized:

Input sequence: $\{0.1, -0.2, 0.2, 0.1, -0.3, 0.1, 0.2, 0.5, 1.5, 1.8\}$, Initial step size = 0.5, $M_0 = M_4 = 0.8$, $M_1 = M_5 = 0.9$, $M_2 = M_6 = 1.0$, $M_3 = M_7 = 1.2$ (10 Marks)

- b. Obtain the DCT, F(u, v) for the given input sequence f(i, j) = {2, 2, 2, 2, 2, 2, 2}. Show the step-wise calculations clearly. (10 Marks)
- 4 a. Define JPEG standard. List the main steps in JPEG image compression. (10 Marks)
 - b. Summarize sub-band coding algorithm. (10 Marks)
- 5 a. Explain embedded zero tree wavelet (EZW) algorithm using 10-band decomposition.
 - (10 Marks)
 - c. Explain speech compression mechanism using linear predictive coding. (06 Marks)
- 6 a. With the help of a typical H.261 frame sequence. Explain H.261 image frame types.

(08 Marks)

(04 Marks)

- b. Using pair wise nearest neighbour (PNN) algorithm and combining clusters, that causes small increase in distortion, generate a vector quantiser and calculate distortion. The height and weight values for vector quantiser are:
 - (72, 180), (65, 120), (59, 119), (64, 150), (65, 162), (57, 88), (72, 175), (44, 41), (62, 114), (60, 110), (56, 91), (70, 172) (05 Marks)
- c. Explain MPEG audio-compression algorithm. (07 Marks)

- 7 a. Using adaptive Huffman coding, draw a flow chart for the updating procedure. Encode the message (a, a, r, d, v) using update procedures. (07 Marks)
 - b. If the initial codes for letters A, B and C are respectively 1, 2 and 3. Compress the string "ABABBABCABABBA". Using LZW, show the dictionary and obtain code. Calculate compression ratio. (06 Marks)
 - c. What are arithmetic codes? Determine the tag for the sequence (a_1, a_3, a_2, a_1) using the probability model for an alphabet (a_1, a_2, a_3) with probability of occurrence $a_1 = 0.8$, $a_2 = 0.02$, $a_3 = 0.18$ (07 Marks)
- **8** Write short notes on:
 - a. Companded quantization.
 - b. Golomb codes and Tunstall codes.
 - c. Adaptive delta modulation.
 - d. Features of quantiser in G.726 speech coding standard.

(20 Marks)